Incidence Coloring of Graphs G with Δ(G)≤4*

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incidence Coloring Game and Arboricity of Graphs

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e an edge incident to v. Two incidences (v, e) and (w, f) are adjacent whenever v = w, or e = f , or vw = e or f . The incidence coloring game [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary coloring game where the two players, Alice and Bob, alte...

متن کامل

Interval incidence coloring of subcubic graphs

For a given simple graph G = (V,E), we define an incidence as a pair (v, e), where vertex v ∈ V (G) is one of the ends of edge e ∈ E(G). Let us define a set of incidences I(G) = {(v, e) : v ∈ V (G)∧ e ∈ E(G)∧ v ∈ e}. We say that two incidences (v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, e 6= f , (ii) e = f , v 6= w, (iii) e = {v, w}, f = {w, u} and v 6= u. By an inc...

متن کامل

Incidence coloring of graphs with high maximum average degree

An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and e an edge of G incident with v. Two incidences (v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, (ii) e = f or (iii) vw = e or f . An incidence coloring of G assigns a color to each incidence of G in such a way that adjacent incidences get distinct colors. In 2005, Hosseini Dolama et al. [...

متن کامل

On incidence coloring for some cubic graphs

In 1993, Brualdi and Massey conjectured that every graph can be incidence colored with ∆+2 colors, where ∆ is the maximum degree of a graph. Although this conjecture was solved in the negative by an example in [1], it might hold for some special classes of graphs. In this paper, we consider graphs with maximum degree ∆ = 3 and show that the conjecture holds for cubic Hamiltonian graphs and some...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2018

ISSN: 2324-7991,2324-8009

DOI: 10.12677/aam.2018.74041